Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(23): 9700-9706, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441915

RESUMO

Single layers of two-dimensional (2D) materials hold the promise for further miniaturization of semiconductor electronic devices. However, the metal-semiconductor contact resistance limits device performance. To mitigate this problem, we propose modulation doping, specifically a doping layer placed on the opposite side of a metal-semiconductor interface. Using first-principles calculations to obtain the band alignment, we show that the Schottky barrier height and, consequently, the contact resistance at the metal-semiconductor interface can be reduced by modulation doping. We demonstrate the feasibility of this approach for a single-layer tungsten diselenide (WSe2) channel and 2D MXene modulation doping layers, interfaced with several different metal contacts. Our results indicate that the Fermi level of the metal can be shifted across the entire band gap. This approach can be straight-forwardly generalized for other 2D semiconductors and a wide variety of doping layers.

2.
Adv Mater ; 34(48): e2103286, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309090

RESUMO

Wafer-scale growth of transition metal dichalcogenides with precise control over the number of layers, and hence the electronic state is an essential technology for expanding the practical application of 2D materials. Herein, a new growth method, phase-transition-induced growth (PTG), is proposed for the precisely controlled growth of molybdenum disulfide (MoS2 ) films consisting of one to eleven layers with spatial uniformity on a 2 in. wafer. In this method, an energetically unstable amorphous MoSx Oy (a-MoSx Oy ) phase is effectively converted to a thermodynamically stable crystalline MoS2 film. The number of MoS2 layers is readily controlled layer-by-layer by controlling the amount of Mo atoms in a-MoSx Oy , which is also applicable for the growth of heteroatom-inserted MoS2 . The electronic states of intrinsic and Nb-inserted MoS2 with one and four layers grown by PTGare are analyzed based on their work functions. The work function of monolayer MoS2 effectively increases with the substitution of Nb for Mo. As the number of layers increases to four, charge screening becomes weaker, dopant ionization becomes easier, and ultimately the work function increases further. Thus, better electronic state modulation is achieved in a thicker layer, and in this respect, PTG has the advantage of enabling precise control over the film thickness.

3.
ACS Appl Mater Interfaces ; 13(30): 36499-36506, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310129

RESUMO

HfO2-based ferroelectrics are highly expected to lead the new paradigm of nanoelectronic devices owing to their unexpected ability to enhance ferroelectricity in the ultimate thickness scaling limit (≤2 nm). However, an understanding of its physical origin remains uncertain because its direct microstructural and chemical characterization in such a thickness regime is extremely challenging. Herein, we solve the mystery for the continuous retention of high ferroelectricity in an ultrathin hafnium zirconium oxide (HZO) film (∼2 nm) by unveiling the evolution of microstructures and crystallographic orientations using a combination of state-of-the-art structural analysis techniques beyond analytical limits and theoretical approaches. We demonstrate that the enhancement of ferroelectricity in ultrathin HZO films originates from textured grains with a preferred orientation along an unusual out-of-plane direction of (112). In principle, (112)-oriented grains can exhibit 62% greater net polarization than the randomly oriented grains observed in thicker samples (>4 nm). Our first-principles calculations prove that the hydroxyl adsorption during the deposition process can significantly reduce the surface energy of (112)-oriented films, thereby stabilizing the high-index facet of (112). This work provides new insights into the ultimate scaling of HfO2-based ferroelectrics, which may facilitate the design of future extremely small-scale logic and memory devices.

4.
Phys Chem Chem Phys ; 23(4): 2568-2574, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33078177

RESUMO

Atomic layer deposition (ALD) has scarcely been utilized in large-scale manufacturing and industrial processes due to its low productivity, even though it possesses several advantages for improving the device performance. The major cause of its low productivity is the slow growth rate, which is determined by the amount of chemisorbed precursor. The slow growth rate of ALD has become even more critical due to the introduction of heteroleptic-based precursors for achieving a higher thermal stability. In this study, we investigated the theoretical and experimental chemisorption characteristics of the Ti(CpMe5)(OMe)3 precursor during the ALD of TiO2. By density functional theory calculations, the relationship between the steric hindrance effect and the chemistry of a chemisorbed precursor was revealed. Based on the calculation result, a way for improving the growth per cycle by 50% was proposed and demonstrated, successfully.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33206497

RESUMO

Graphene-based two-dimensional heterostructures are of substantial interest both for fundamental studies and their various potential applications. Particularly interesting are atomically thin semiconducting oxides on graphene, which uniquely combine a wide band gap and optical transparency. Here, we report the atomic-scale investigation of a novel self-formation of a ZnO monolayer from the Zn metal on a graphene oxide substrate. The spontaneous oxidation of the ultrathin Zn metal occurs by a reaction with oxygen supplied from the graphene oxide substrate, and graphene oxide is deoxygenated by a transfer of oxygen from O-containing functional groups to the zinc metal. The ZnO monolayer formed by this spontaneous redox reaction shows a graphene-like structure and a band gap of about 4 eV. This study demonstrates a unique and straightforward synthetic route to atomically thin two-dimensional heterostructures made from a two-dimensional metal oxide and graphene, formed by the spontaneous redox reaction of a very thin metal layer directly deposited on graphene oxide.

6.
Adv Mater ; 32(42): e2003542, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32935911

RESUMO

For practical device applications, monolayer transition metal dichalcogenide (TMD) films must meet key industry needs for batch processing, including the high-throughput, large-scale production of high-quality, spatially uniform materials, and reliable integration into devices. Here, high-throughput growth, completed in 12 min, of 6-inch wafer-scale monolayer MoS2 and WS2 is reported, which is directly compatible with scalable batch processing and device integration. Specifically, a pulsed metal-organic chemical vapor deposition process is developed, where periodic interruption of the precursor supply drives vertical Ostwald ripening, which prevents secondary nucleation despite high precursor concentrations. The as-grown TMD films show excellent spatial homogeneity and well-stitched grain boundaries, enabling facile transfer to various target substrates without degradation. Using these films, batch fabrication of high-performance field-effect transistor (FET) arrays in wafer-scale is demonstrated, and the FETs show remarkable uniformity. The high-throughput production and wafer-scale automatable transfer will facilitate the integration of TMDs into Si-complementary metal-oxide-semiconductor platforms.

7.
Nano Lett ; 19(4): 2411-2417, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30896171

RESUMO

Atomically thin two-dimensional (2D) materials-such as transition metal dichalcogenide (TMD) monolayers and hexagonal boron nitride (hBN)-and their van der Waals layered preparations have been actively researched to build electronic devices such as field-effect transistors, junction diodes, tunneling devices, and, more recently, memristors. Two-dimensional material memristors built in lateral form, with horizontal placement of electrodes and the 2D material layers, have provided an intriguing window into the motions of ions along the atomically thin layers. On the other hand, 2D material memristors built in vertical form with top and bottom electrodes sandwiching 2D material layers may provide opportunities to explore the extreme of the memristive performance with the atomic-scale interelectrode distance. In particular, they may help push the switching voltages to a lower limit, which is an important pursuit in memristor research in general, given their roles in neuromorphic computing. In fact, recently Akinwande et al. performed a pioneering work to demonstrate a vertical memristor that sandwiches a single MoS2 monolayer between two inert Au electrodes, but it could neither attain switching voltages below 1 V nor control the switching polarity, obtaining both unipolar and bipolar switching devices. Here, we report a vertical memristor that sandwiches two MoS2 monolayers between an active Cu top electrode and an inert Au bottom electrode. Cu ions diffuse through the MoS2 double layers to form atomic-scale filaments. The atomic-scale thickness, combined with the electrochemical metallization, lowers switching voltages down to 0.1-0.2 V, on par with the state of the art. Furthermore, our memristor achieves consistent bipolar and analogue switching, and thus exhibits the synapse-like learning behavior such as the spike-timing dependent plasticity (STDP), the very first STDP demonstration among all 2D-material-based vertical memristors. The demonstrated STDP with low switching voltages is promising not only for low-power neuromorphic computing, but also from the point of view that the voltage range approaches the biological action potentials, opening up a possibility for direct interfacing with mammalian neuronal networks.

8.
Adv Mater ; 31(15): e1807486, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30785234

RESUMO

Van der Waals (vdW) epitaxy allows the fabrication of various heterostructures with dramatically released lattice matching conditions. This study demonstrates interface-driven stacking boundaries in WS2 using epitaxially grown tungsten disulfide (WS2 ) on wrinkled graphene. Graphene wrinkles function as highly reactive nucleation sites on WS2 epilayers; however, they impede lateral growth and induce additional stress in the epilayer due to anisotropic friction. Moreover, partial dislocation-driven in-plane strain facilitates out-of-plane buckling with a height of 1 nm to release in-plane strain. Remarkably, in-plane strain relaxation at partial dislocations restores the bandgap to that of monolayer WS2 due to reduced interlayer interaction. These findings clarify significant substrate morphology effects even in vdW epitaxy and are potentially useful for various applications involving modifying optical and electronic properties by manipulating extended 1D defects via substrate morphology control.

9.
J Phys Chem Lett ; 9(24): 7059-7063, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30509074

RESUMO

The direct growth of graphene on a semiconducting substrate opens a new avenue for future graphene-based applications. Understanding the structural and electronic properties of the graphene on a semiconducting surface is key for realizing such structures; however, these properties are poorly understood thus far. Here, we provide insight into the structural and electronic properties of graphene grown directly on a Ge(110) substrate. Our scanning tunneling microscopy (STM) study reveals that overlaying graphene on Ge(110) promotes the formation of a new Ge surface reconstruction, i.e., a (6 × 2) superstructure, which has been never observed for a bare Ge(110) surface. The electronic properties of the system exhibit the characteristics of both graphene and Ge. The differential conductance (d I/d V) spectrum from a scanning tunneling spectroscopy (STS) study bears a parabolic structure, corresponding to a reduction in the graphene Fermi velocity, exhibiting additional peaks stemming from the p-orbitals of Ge. The density functional theory (DFT) calculations confirm the existence of surface states due to the p-orbitals of Ge.

10.
Adv Mater ; 30(39): e1801210, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30117201

RESUMO

Recently, as applications based on triboelectricity have expanded, understanding the triboelectric charging behavior of various materials has become essential. This study investigates the triboelectric charging behaviors of various 2D layered materials, including MoS2 , MoSe2 , WS2 , WSe2 , graphene, and graphene oxide in a triboelectric series using the concept of a triboelectric nanogenerator, and confirms the position of 2D materials in the triboelectric series. It is also demonstrated that the results are obviously related to the effective work functions. The charging polarity indicates the similar behavior regardless of the synthetic method and film thickness ranging from a few hundred nanometers (for chemically exfoliated and restacked films) to a few nanometers (for chemical vapor deposited films). Further, the triboelectric charging characteristics could be successfully modified via chemical doping. This study provides new insights to utilize 2D materials in triboelectric devices, allowing thin and flexible device fabrication.

11.
Nano Lett ; 18(8): 4878-4884, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30036065

RESUMO

Metal-semiconductor junctions are indispensable in semiconductor devices, but they have recently become a major limiting factor precluding device performance improvement. Here, we report the modification of a metal/n-type Si Schottky contact barrier by the introduction of two-dimensional (2D) materials of either graphene or hexagonal boron nitride (h-BN) at the interface. We realized the lowest specific contact resistivities (ρc) of 3.30 nΩ cm2 (lightly doped n-type Si, ∼ 1015/cm3) and 1.47 nΩ cm2 (heavily doped n-type Si, ∼ 1021/cm3) via 2D material insertion are approaching the theoretical limit of 1.3 nΩ cm2. We demonstrated the role of the 2D materials at the interface in achieving a low ρc value by the following mechanisms: (a) 2D materials effectively form dipoles at the metal-2D material (M/2D) interface, thereby reducing the metal work function and changing the pinning point, and (b) the fully metalized M/2D system shifts the pinning point toward the Si conduction band, thus decreasing the Schottky barrier. As a result, the fully metalized M/2D system using atomically thin and well-defined 2D materials shows a significantly reduced ρc. The proposed 2D material insertion technique can be used to obtain extremely low contact resistivities in metal/n-type Si systems and will help to achieve major performance improvements in semiconductor technologies.

12.
Adv Mater ; 29(47)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29094458

RESUMO

A reliable and rapid manufacturing process of molybdenum disulfide (MoS2 ) with atomic-scale thicknesses remains a fundamental challenge toward its successful incorporation into high-performance nanoelectronics. It is imperative to achieve rapid and scalable production of MoS2 exhibiting high carrier mobility and excellent on/off current ratios simultaneously. Herein, inhibitor-utilizing atomic layer deposition (iALD) is presented as a novel method to meet these requirements at the wafer scale. The kinetics of the chemisorption of Mo precursors in iALD is governed by the reaction energy and the steric hindrance of inhibitor molecules. By optimizing the inhibition of Mo precursor absorption, the nucleation on the substrate in the initial stage can be spontaneously tailored to produce iALD-MoS2 thin films with a significantly increased grain size and surface coverage (>620%). Moreover, highly crystalline iALD-MoS2 thin films, with thicknesses of only a few layers, excellent room temperature mobility (13.9 cm2 V-1 s-1 ), and on/off ratios (>108 ), employed as the channel material in field effect transistors on 6″ wafers, are successfully prepared.

13.
ACS Nano ; 11(2): 1588-1596, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28088846

RESUMO

Electrical metal contacts to two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are found to be the key bottleneck to the realization of high device performance due to strong Fermi level pinning and high contact resistances (Rc). Until now, Fermi level pinning of monolayer TMDCs has been reported only theoretically, although that of bulk TMDCs has been reported experimentally. Here, we report the experimental study on Fermi level pinning of monolayer MoS2 and MoTe2 by interpreting the thermionic emission results. We also quantitatively compared our results with the theoretical simulation results of the monolayer structure as well as the experimental results of the bulk structure. We measured the pinning factor S to be 0.11 and -0.07 for monolayer MoS2 and MoTe2, respectively, suggesting a much stronger Fermi level pinning effect, a Schottky barrier height (SBH) lower than that by theoretical prediction, and interestingly similar pinning energy levels between monolayer and bulk MoS2. Our results further imply that metal work functions have very little influence on contact properties of 2D-material-based devices. Moreover, we found that Rc is exponentially proportional to SBH, and these processing parameters can be controlled sensitively upon chemical doping into the 2D materials. These findings provide a practical guideline for depinning Fermi level at the 2D interfaces so that polarity control of TMDC-based semiconductors can be achieved efficiently.

14.
Nano Lett ; 16(11): 6746-6754, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27704847

RESUMO

Atomically thin two-dimensional (2D) materials range from semimetallic graphene to insulating hexagonal boron nitride to semiconducting transition-metal dichalcogenides. Recently, metal-insulator-semiconductor field effect transistors built from these 2D elements were studied for flexible and transparent electronics. However, to induce ambipolar characteristics for alternative power-efficient circuitry, ion-gel gating is often employed for high capacitive coupling, limiting stable operation at ambient conditions. Here, we report reconfigurable MoTe2 optoelectronic transistors with all 2D components, where the device can be reconfigured by both drain and gate voltages. Eight different configurations for each fixed voltage are spatially resolved by scanning photocurrent microscopy. In addition, metal-insulator transitions are observed in both electron and hole carriers under 2 V due to strong Coulomb interaction in the system. Furthermore, the vertical tunneling photocurrent through multiple van der Waals layers between the gate and source contacts is measured. Our reconfigurable devices offer potential building blocks for system-on-a-chip optoelectronics.

15.
ACS Appl Mater Interfaces ; 8(28): 18519-25, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27337938

RESUMO

Although triboelectrification is a well-known phenomenon, fundamental understanding of its principle on a material surface has not been studied systematically. Here, we demonstrated that the surface potential, especially the surface dipoles and surface electronic states, governed the triboelectrification by controlling the surface with various electron-donating and -withdrawing functional groups. The functional groups critically affected the surface dipoles and surface electronic states followed by controlling the amount of and even the polarity of triboelectric charges. As a result, only one monolayer with a thickness of less than 1 nm significantly changed the conventional triboelectric series. First-principles simulations confirmed the atomistic origins of triboelectric charges and helped elucidate the triboelectrification mechanism. The simulation also revealed for the first time where charges are retained after triboelectrification. This study provides new insights to understand triboelectrification.

16.
ACS Nano ; 10(7): 6659-66, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27355098

RESUMO

We introduce a reliable and robust gate dielectric material with tunable dielectric constants based on a mesostructured HfxAlyO2 film. The ultrathin mesostructured HfxAlyO2 film is deposited on graphene via a physisorbed-precursor-assisted atomic layer deposition process and consists of an intermediate state with small crystallized parts in an amorphous matrix. Crystal phase engineering using Al dopant is employed to achieve HfO2 phase transitions, which produce the crystallized part of the mesostructured HfxAlyO2 film. The effects of various Al doping concentrations are examined, and an enhanced dielectric constant of ∼25 is obtained. Further, the leakage current is suppressed (∼10(-8) A/cm(2)) and the dielectric breakdown properties are enhanced (breakdown field: ∼7 MV/cm) by the partially remaining amorphous matrix. We believe that this contribution is theoretically and practically relevant because excellent gate dielectric performance is obtained. In addition, an array of top-gated metal-insulator-graphene field-effect transistors is fabricated on a 6 in. wafer, yielding a capacitance equivalent oxide thickness of less than 1 nm (0.78 nm). This low capacitance equivalent oxide thickness has important implications for the incorporation of graphene into high-performance silicon-based nanoelectronics.

17.
Phys Chem Chem Phys ; 17(9): 6423-32, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25655486

RESUMO

Hydrogen storage in carbonaceous materials and their derivatives is currently a widely investigated topic. The rational design of novel adsorptive materials is often attempted with the help of computational chemistry tools, in particular density functional theory (DFT). However, different exchange-correlation functionals provide a very wide range of hydrogen binding energies. The aim of this article is to offer high level QM reference data based on coupled-cluster singles and doubles calculations with perturbative triple excitations, CCSD(T), and a complete basis set limit estimate that can be used to assess the accuracy of various DFT-based predictions. For one complex, the CCSD(T) result is verified against diffusion quantum Monte Carlo calculations. Reference binding curves are calculated for two model compounds representing weak and strong hydrogen adsorption: coronene (-4.7 kJ mol(-1) per H2), and coronene modified with boron and lithium (-14.3 kJ mol(-1)). The reference data are compared to results obtained with widely used density functionals including pure DFT, M06, DFT-D3, PBE-TS, PBE + MBD, optB88-vdW, vdW-DF, vdW-DF2 and VV10. We find that whereas DFT-D3 shows excellent results for weak hydrogen adsorption on coronene, most of the less empirical density based dispersion functionals except VV10 overestimate this interaction. On the other hand, some of the less empirical density based dispersion functionals better describe stronger binding in the more polar coroB2Li22H2 complex which is one of realistic models for high-capacity hydrogen storage materials. Our results may serve as a guide for choosing suitable DFT methods for quickly evaluating hydrogen binding potential and as a reference for assessing the accuracy of the previously published DFT results.

18.
Acc Chem Res ; 47(11): 3321-30, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25338296

RESUMO

CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium point are reasonably close to the CCSD(T) results but sometimes slightly deviate from them because interaction energies were not particularly optimized with parameters. Nevertheless, because the electron cloud deforms when neighboring atoms/ions induce an electric field, both vdW-DF2 and PBE0-TS seem to properly reproduce the resulting change of dispersion interaction. Thus, improvements are needed in both vdW-DF2 and PBE0-TS to better describe the interaction energies, while the B97-D3 method could benefit from the incorporation of polarization-driven energy changes that show highly anisotropic behavior. Although the current DFT-D methods need further improvement, DFT-D is very useful for computer-aided molecular design. We have used these newly developed DFT-D methods to calculate the interactions between graphene and DNA nucleobases. Using DFT-D, we describe the design of molecular receptors of π-systems, graphene based electronic devices, metalloporphyrin half-metal based spintronic devices as graphene nanoribbon (GNR) analogs, and graphene based molecular electronic devices for DNA sequencing. DFT-D has also helped us understand quantum phenomena in materials and devices of π-systems including graphene.


Assuntos
Teoria Quântica , Modelos Teóricos , Termodinâmica
19.
ACS Nano ; 8(8): 8662-8, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25117455

RESUMO

Although line defects such as grain boundaries (GBs) and wrinkles are unavoidable in graphene, difficulties in identification preclude studying their impact on electronic and mechanical properties. As previous methods focus on a single type of line defect, simultaneous measurements of both GBs and wrinkles with detailed structural information have not been reported. Here, we introduce effective visualization of both line defects by controlled gold deposition. Upon depositing gold on graphene, single lines and double lines of gold nanoparticles (NPs) are formed along GBs and wrinkles, respectively. Moreover, it is possible to analyze whether a GB is stitched or overlapped, whether a wrinkle is standing or folded, and the width of the standing collapsed wrinkle. Theoretical calculations show that the characteristic morphology of gold NPs is due to distinct binding energies of line defects, which are correlated to disrupting diffusion of NPs. Our approach could be further exploited to investigate the defect structures of other two-dimensional materials.

20.
ACS Nano ; 8(2): 1827-33, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24446806

RESUMO

Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.


Assuntos
DNA de Neoplasias/metabolismo , Análise de Sequência de DNA/métodos , Análise Espectral/métodos , DNA de Neoplasias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...